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Abstract

Inbreeding and relationship metrics among and within populations are useful measures

for genetic management of wild populations, but accuracy and precision of estimates

can be influenced by the number of individual genotypes analysed. Biologists are con-

fronted with varied advice regarding the sample size necessary for reliable estimates

when using genomic tools. We developed a simulation framework to identify the opti-

mal sample size for three widely used metrics to enable quantification of expected

variance and relative bias of estimates and a comparison of results among populations.

We applied this approach to analyse empirical genomic data for 30 individuals from

each of four different free-ranging Rocky Mountain bighorn sheep (Ovis canadensis

canadensis) populations in Montana and Wyoming, USA, through cross-species appli-

cation of an Ovine array and analysis of approximately 14,000 single nucleotide poly-

morphisms (SNPs) after filtering. We examined intra- and interpopulation relationships

using kinship and identity by state metrics, as well as FST between populations. By

evaluating our simulation results, we concluded that a sample size of 25 was adequate

for assessing these metrics using the Ovine array to genotype Rocky Mountain big-

horn sheep herds. However, we conclude that a universal sample size rule may not be

able to sufficiently address the complexities that impact genomic kinship and inbreed-

ing estimates. Thus, we recommend that a pilot study and sample size simulation using

R code we developed that includes empirical genotypes from a subset of populations

of interest would be an effective approach to ensure rigour in estimating genomic kin-

ship and population differentiation.
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1 | INTRODUCTION

The composition of individual genomes can be an important influ-

ence on the health and long-term persistence of wildlife populations.

Genomes can have profound impacts on individual fitness (Kris-

tensen, Pedersen, Vermeulen, & Loeschcke, 2010; Romanov et al.,

2009), population-level demography (Hogg, Forbes, Steele, & Luikart,

2006), resilience to environmental change (Manel et al., 2010) and

response to novel pathogens or parasites (Acevedo-Whitehouse

et al., 2005; Coltman, Pilkington, Kruuk, Wilson, & Pemberton, 2001;

Siddle et al., 2007). Thus, genomic assessment of populations can be

an important component of wildlife research and conservation

efforts. Two important genetic attributes are inbreeding measured

for individuals and kinship among individuals (Blouin, 2003). At the

population level, these attributes serve to evaluate gene flow among

populations (Morin et al., 1994; Streiff et al., 1999), detect popula-

tion differentiation (Funk, McKay, Hohenlohe, & Allendorf, 2012)

and evaluate demographic history (Li & Durbin, 2011; Sheehan,
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Harris, & Song, 2013). On the individual level, inbreeding and relat-

edness metrics can indicate inbreeding depression effects (Grueber,

Laws, Nakagawa, & Jamieson, 2010; Nielsen et al., 2012), heritability

of observed phenotypes (Daetwyler et al., 2014; Kruuk, 2004) and

life history characteristics, such as propensity for dispersal (Gueij-

man, Ayali, Ram, & Hadany, 2013; Shafer, Poissant, Côt�e, & Coltman,

2011).

Researchers and wildlife managers often have limited resources

and seek to maximize biological insight derived for the resources

invested in wildlife capture and genomic analysis. To make

informed decisions regarding study design, biologists require an

approach to evaluate the expected level of uncertainty in inbreed-

ing and kinship results and decide on an acceptable sampling inten-

sity. The level of biological insight and uncertainty derived from

estimates of inbreeding and kinship can be influenced by many

aspects of study design, including the metric employed, marker

type, number of markers, number of individuals sampled per popu-

lation, and composition of the populations and individuals under

consideration (Csill�ery et al., 2006; Frankham et al., 2017). Despite

the potential for these study design decisions to impact biological

inferences, few studies evaluate the reliability and precision of

relatedness and inbreeding estimates prior to sampling, resulting in

potential for imprecise estimates and results being interpreted out

of context (Taylor, 2015). Thus, guidelines are needed to promote

robust conclusions regarding relatedness and inbreeding metric per-

formance for each data set (Taylor, 2015). As a result, in this study,

we sought to conduct a rigorous simulation study to evaluate multi-

ple inbreeding and kinship metrics while accounting for different

influences on estimator precision.

There are many different metrics and alternative approaches for

estimating inbreeding and kinship using molecular markers, and criti-

cal differences exist among their respective inferences when applied

to genetic management of populations (Frankham et al., 2017).

Three of the main metric types include identity by state, kinship

coefficients and F-statistics. In terms of single nucleotide polymor-

phisms (SNPs), identity by state (IBS) means that the same nucleo-

tide is located at the same genomic position in both the maternal

and paternal chromosomes (Toro, Villanueva, & Fern�andez, 2014).

The probability of zero identity by state sharing is calculated pair-

wise between two individuals (dyads) and estimates the probability

that two individuals share zero alleles that are identical by state

(Manichaikul et al., 2010). Kinship coefficient (/), also termed

coancestry, is calculated between two individuals and estimates the

probability that two randomly selected alleles, one from each individ-

ual, from any locus are identical by descent (Manichaikul et al.,

2010). A particularly common F-statistic is FST, which measures dif-

ferentiation among subpopulations.

The type, number and polymorphism of molecular markers used

as inputs for kinship and inbreeding calculations impact the accuracy

of resulting estimates (Blouin, 2003). Microsatellite markers, which

are short tandem repeats of DNA motifs, have been applied in many

wildlife genetic studies, but often include a limited number of mark-

ers, resulting in kinship and inbreeding estimates that may correlate

poorly with those derived from pedigrees (Slate et al., 2004; Taylor,

Kardos, Ramstad, & Allendorf, 2015; Toro et al., 2002). Thus,

employing a small number of microsatellite markers may have lim-

ited utility to inform management decisions to maintain genetic

diversity in conservation programmes (Fern�andez et al., 2012).

Therefore, multiple studies have recommended the use of genomic

data over microsatellites for this purpose (Frankham et al., 2017;

Saura et al., 2013; Toro et al., 2014). Genomic data are composed

of many more markers across the genome and can be generated by

RADseq (Thrasher, Butcher, Campagna, Webster, & Lovette, 2018),

whole genome sequencing (Pool, Hellmann, Jensen, & Nielsen,

2010), and cross-species application of SNP chips (Haynes & Latch,

2012; Miller, Kijas, Heaton, McEwan, & Coltman, 2012; Miller, Pois-

sant, Kijas, & Coltman, 2011). When SNP data were used instead of

microsatellites, inbreeding and kinship estimates were more strongly

correlated with genealogical data, and the addition of microsatellite

data to SNP data did not improve accuracy (Santure et al., 2010).

Mapped genomic data also enable evaluation and management of

inbreeding and kinship across specific genomic regions (Roughsedge,

Pong-Wong, Woolliams, & Villanueva, 2008). In general, genomic

data have the potential to provide stronger inference on patterns of

kinship and inbreeding than a limited number of microsatellites and

may require 52% fewer samples per population (Jeffries et al.,

2016).

Sample size is an important study design factor that influences

study cost and inferential strength. There are generally two types of

sampling that occur in inbreeding and kinship studies. First, there is

process variance, also sometimes termed genetic sampling in the

genetic literature, due to variations in allele frequencies caused by

natural processes, such as genetic drift and local adaptation (Hol-

singer & Weir, 2009). Thus, existing composition and demographic

history of a considered population can impact precision of results,

for example, low variance in kinship can result in lower power to

address research questions (Csill�ery et al., 2006; Robinson, Simmons,

& Kennington, 2013; Taylor, 2015; Van de Casteele, Galbusera, &

Matthysen, 2001). Second, there is sampling variance, caused by

variation in allele frequencies when a subset of individuals (the sam-

ple) is drawn from the population (Holsinger & Weir, 2009). This

source of variation can be addressed by increasing the number of

animals sampled from each population (Holsinger & Weir, 2009).

Despite the influence of sampling variance, actual and recommended

sample sizes for evaluating a population have varied widely by study.

Evaluations of simulated microsatellite data sets recommended a

range of 20–100 individuals per population to evaluate FST (Kali-

nowski, 2004), and 50 individuals per population to identify immi-

grants (Paetkau, Slade, Burden, & Estoup, 2004), while another study

that used an empirical microsatellite data set estimated that 25–30

individuals were necessary to accurately estimate allele frequencies

(Hale, Burg, & Steeves, 2012).

Evaluations of sample size for genomic data have also varied in

their approach and recommendations. In general, studies using high-

throughput sequencing have tended to use smaller sample sizes due

to expense, in comparison with microsatellite genotyping studies.
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However, limited sampling can greatly impact population genetic

inferences (Meirmans, 2015). Hoban and Schlarbaum (2014) recom-

mended 25–30 samples per plant population to capture spatially

restricted alleles using a simulated microsatellite and SNP data set.

In contrast, a simulation using 10,000 bi-allelic loci found that a

sample size of four to six could be sufficient for some but not all

FST statistics (Willing, Dreyer, & van Oosterhout, 2012). A study

that simulated sequencing data of varying depth estimated that 40

samples with low sequencing depth had the highest accuracy to

evaluate population structure (Fumagalli, 2013). Empirical data sets

may be even more useful for this evaluation because simulated data

sets are unlikely to include all aspects of real systems (May, 2004).

A recent empirical study using SNPs from a tree species suggested

that increasing sample sizes beyond eight individuals had little

impact on estimates of genetic diversity within and among popula-

tions (Nazareno, Bemmels, Dick, & Lohmann, 2017). The study was

a step forward in contributing to the sample size literature using an

empirical genomic data set but was limited to a small number of

replicates per simulation (100) and a small number of SNPs (1000)

from two populations for a nonmodel plant species. Another empiri-

cal simulation study employed 23,057 SNPs to evaluate precision of

FST estimates between Galapagos tortoise populations and deter-

mined that three or five samples per population provided more pre-

cise estimates than two samples (Gaughran et al., 2017). However,

no empirical genomic simulation has been published for free-ranging

mammals.

Due to the many factors that can impact population genetic

metrics, it can be prudent to evaluate the precision and accuracy

of estimators for each unique data set (Taylor, 2015; Van de Cas-

teele et al., 2001; Wang, 2011). This is especially relevant when

evaluating populations of conservation concern with past bottle-

necks and suspected low genetic diversity (Taylor, 2015). Thus,

multiple simulation software options have been developed to

address the need to test how a particular method might perform

for a given research question, molecular marker data set and study

species (Hoban, 2014). For example, the programme “Coancestry”

and its associated package “related” (Pew, Muir, Wang, & Frasier,

2015; Wang, 2011) for use with the R statistical software environ-

ment (R Core Team, 2017) were developed to allow users to

select the best relatedness or inbreeding estimator for a given data

set. The software utilizes empirical allele frequencies to conduct a

priori simulations and evaluate the reliability of moment and likeli-

hood estimators. However, this tool is limited to seven metrics, all

of which estimate relatedness and inbreeding relative to a refer-

ence population assumed to include unrelated and noninbred ani-

mals (Taylor, 2015). These metrics are based on comparing

molecular markers of a specified homogeneous population to those

found in individuals or dyads (Purcell et al., 2007). However,

detecting population structure depends on correctly identifying

individuals that are not related (Zhu, Li, Cooper, & Elston, 2008),

which violates the assumption of a homogeneous population and

consequently results in less accurate relationship inferences (Mani-

chaikul et al., 2010).

There is a need for a more user-friendly and flexible

approach to evaluate sample size for inbreeding and kinship

metrics, given different molecular markers and study populations.

If researchers implemented an analysis of sample size to derive

relationship inferences, reporting of results would become more

comparable among studies and allow for more generalizable

insights. Thus, we sought to conduct a rigorous simulation study

using an empirical genomic data set for wild animals to evaluate

inbreeding and kinship metrics, account for different influences

on estimator precision and provide sampling guidance for future

similar efforts. In a specific manner, we wanted to determine

how variance in the population average for metric values related

to sample size across a gradient of sample sizes, ranging from

inadequate to sufficient for reliable and informative insights. To

accomplish this, we conducted simulations employing three

selected metrics to evaluate genomic relationship inferences

within and between populations of Rocky Mountain bighorn

sheep (Ovis canadensis canadensis). The genomics of Rocky

Mountain bighorn sheep provide an excellent opportunity to

evaluate and compare genetic management metrics across popu-

lation sizes that range from small, isolated herds recovering from

population bottlenecks to large metapopulations that can sustain

human harvest. Therefore, the herds we examined consisted of

different management and demographic histories that likely

impacted inbreeding and kinship and are representative of many

other wildlife populations of conservation concern. As sampling

guidelines might not apply equally well to all situations and spe-

cies (Hoban & Schlarbaum, 2014), we sought to develop a flexi-

ble and transparent approach that could be easily applied by

other researchers and managers to other data sets. Thus, we

developed well-annotated, straightforward code for R (R Core

Team, 2017) that others can modify and implement to make

informed sample size decisions and achieve desired biological

insights for other populations. We seek to shift from a paradigm

of a single sample size recommendation to a more adaptive

framework, where researchers employ a similar method to evalu-

ate sample size decisions for specific data sets and metrics, to

enhance inference reliability and maximize comparability of stud-

ies that estimate inbreeding and kinship.

2 | MATERIALS AND METHODS

2.1 | Genomic data set

Marker density of many agricultural animal SNP chips can provide

informative molecular kinship estimates that are better than pedi-

grees when applied to related, nonmodel species of conservation

concern (G�omez-Romano, Villanueva, Rodr�ıguez de Cara, & Fern�an-

dez, 2013). Thus, we employed a SNP genotype data set generated

from the High Density (HD) Ovine array, which contains approxi-

mately 606,006 SNPs with a density of 1 SNP per 4.279 kb. The

Ovine array (also called a SNP chip) is a new genomic analysis tech-

nique originally developed for domestic sheep, but its development
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included genotypes from five bighorn sheep and four Dall’s sheep

(Ovis dalli; Kijas et al., 2009, 2014). Species divergence between

domestic sheep and bighorn sheep took place around three million

years ago (Bunch, Wu, Zhang, & Wang, 2006), but domestic sheep

and bighorn sheep can interbreed and produce viable hybrid off-

spring (Young & Manville, 1960). In addition, the two species have

the same number of chromosomes and are expected to have high

genomic synteny (Poissant et al., 2010). An estimated 24,000 SNPs

on the HD Ovine array are informative for evaluation of Rocky

Mountain bighorn sheep (Miller, Moore, Stothard, Liao, & Coltman,

2015). Furthermore, the domestic sheep reference genome enables

whole genome genotyping of bighorn sheep and the potential to

map informative SNPs to genomic areas of known function (Kohn,

Murphy, Ostrander, & Wayne, 2006). However, it is important to

consider that the use of SNP chips can result in ascertainment bias,

as only select individuals were assessed to construct the panel

(Albrechtsen, Nielsen, & Nielsen, 2010), and cross-species application

could be biased towards highly conserved markers. Thus, we sought

to address this issue by comparing results across sample sizes among

herds with different known population attributes.

2.2 | Study populations

We examined four wild populations of bighorn sheep that we

expected to differ in kinship both within and between herds, due to

a spectrum of population attributes and geographic isolation among

herds (Figure 1). Bighorn sheep populations located in Glacier

National Park, Montana, and across the Beartooth Absaroka Moun-

tains in Wyoming served as baseline examples of large, native

metapopulations with high anticipated connectivity and genetic

diversity. The selected samples from Glacier National Park spanned

the eastern front of the park inside Glacier and Flathead Counties,

with approximately 16 from north of St. Mary Lake and 14 from the

southern areas of the park (Flesch & Graves, 2018). The samples

from the Beartooth Absaroka metapopulation spanned the eastern

front of the Greater Yellowstone Area, across Wyoming hunt units

1, 2, 3, 5 and 22 inside Park, Hot Springs, and Fremont Counties.

The Fergus (Fergus County) and Taylor-Hilgard (Gallatin and Madi-

son Counties) herds served as examples of herds with more complex

management histories. The Fergus herd is a large population that

was reintroduced (43 bighorn sheep reintroduced from 1958 to

1961), experienced a population bottleneck of a limited number of

individuals, and was supplemented with additional augmentations.

Thus, this population is representative of a herd with a successful

reintroduction and a current population size of greater than 200

individuals, as well as a past bottlenecks and augmentations. The

Taylor-Hilgard herd represents a native population that experienced

multiple augmentations and catastrophic die-offs that reduced the

population to several 10s of animals, but has recovered to a moder-

ate size of about 280 individuals. In addition, this herd has been

impacted by respiratory disease, which is a major limiting factor to

bighorn sheep conservation and management throughout the west-

ern United States (Besser et al., 2008, 2012; Cassirer et al., 2013;

Cassirer & Sinclair, 2007; Miller, 2008; Monello, Murray, & Cassirer,

2001). Based on a synthesis of these herd history characteristics, we

expected inbreeding and kinship to be lower within the Beartooth

Absaroka and Glacier National Park herds, in comparison with the

Fergus and Taylor-Hilgard herds.

2.3 | Sample collection

Bighorn sheep samples were collected using chemical immobilization,

helicopter net-gunning or baited drop-nets. All capture and handling

protocols complied with scientific guidelines and permits from the

States of Montana and Wyoming, Yellowstone National Park, and

Glacier National Park. Animal capture and handling protocols were

approved by Institutional Care and Use Committees at Montana

State University (Permit # 2011-17, 2014-32), Montana Department

of Fish, Wildlife, and Parks (Permit # 2016-005), Wyoming Game

and Fish Department (Permit # 854) or the U.S. Geological Survey

(Permit #2004-01). Samples were collected at the Fergus, Taylor-Hil-

gard and Beartooth Absaroka populations from 2013 to 2016; Gla-

cier samples were collected from 2004 to 2011. We collected

multiple types of genetic samples, including gene cards, biopsy ear

punches, whole blood and tissue. Collection using gene cards

involved placing 2–4 drops of whole blood directly onto an FTA

Classic gene card. Biopsy punches were obtained from ear cartilage

during ear tagging and stored frozen in 90% ethanol. We also col-

lected whole blood samples for a limited number of animals and tis-

sue samples from hunter-harvested animals. We performed the DNA

extractions using the Maxwell 16 LEV Blood DNA Kit for blood and

gene card samples and the SEV Tissue Kit for biopsy punch and tis-

sue samples. Because of sample availability and the fact that a previ-

ous simulation study (Hoban & Schlarbaum, 2014) suggested that

25–30 samples should be used per population to assess population

structure, we evaluated 30 samples per herd. We employed stratified

random sampling to select six samples from each of five hunt units

across the Beartooth Absaroka population, which had a total of 86

samples. However, because one study suggested that more than 30

samples per population should be used (Fumagalli, 2013), we also

employed all 86 samples from the Beartooth Absaroka for a separate

simulation with a greater sample size to evaluate within-population

kinship, compare how results might differ from analyses using a sam-

ple size of 30 and assess changes in variance when samples were

drawn from a larger pool.

2.4 | Data quality control and analysis

We performed quality control of the 30 samples per herd data set

and all 86 samples from the Beartooth Absaroka data set separately.

The 86 sample Beartooth Absaroka data set included the 30 samples

selected for 30 samples per herd analysis. We completed preliminary

filtering for quality control using Golden Helix SNP & Variation Suite

v8.6 software (SNP & Variation Suite, n.d.). First, we filtered for sam-

ple quality using a call rate threshold of 0.85. We deactivated mark-

ers of unknown mappings and on the sex chromosomes. We filtered
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SNPs using a minor allele frequency of less than 0.0001 to remove

monomorphic and extremely rare markers (De Cara, Villanueva, Toro,

& Fern�andez, 2013). We removed markers with poor performance

by requiring a SNP call rate of greater than 0.99 and this data set

was used for input in the simulations. We also generated a principal

components analysis (PCA) of the 30 samples per herd data set

using Golden Helix after additional filtering using a minor allele fre-

quency threshold of 0.01 and Hardy–Weinberg equilibrium p-value

less than 0.00001 (SNP & Variation Suite, n.d.). We also performed

linkage disequilibrium (LD) pruning of the data set used for the PCA

analysis, which removes nonindependent SNPs that inform the

presence of nearby variants, using a window size of 100, window

increment of 25, LD statistic of r2, LD threshold of 0.99 and LD

computation method CHM (Huisman, Kruuk, Ellis, Clutton-Brock, &

Pemberton, 2016).

We conducted simulations of inbreeding and kinship estimates

within and among bighorn sheep populations to determine optimal

sample size for these analyses. We used program R (R Core Team,

2017) for simulations, modifying the approach by Nazareno et al.

(2017); Supporting Information Appendix S1). Our criteria for optimal

sample size included an assessment of variance and precision. For

variance, we used boxplots to evaluate differences among estimates

K

Montana

0 70 14035 km

Idaho

Wyoming

2

Glacier

Beartooth
Absaroka

Taylor-Hilgard

Fergus

3

1

5

22

F IGURE 1 Bighorn sheep populations
in Montana and Wyoming that were
evaluated. Hunting districts are labelled for
the Beartooth Absaroka population, but
exact hunting district boundaries have
been modified to more precisely show
known species range
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with increasing sample size, as high variance in estimates would

result in similar or potentially misrepresentative estimates. In addi-

tion, we evaluated differentiation among mean estimates using the

standard deviation of the mean for all replicates in each simulation.

We also used boxplots to compare the distribution of mean esti-

mates provided by the 10,000 replicates with the estimates of other

populations with similar or different management histories. We com-

pared the mean estimate for kinship, IBS and FST generated from

each simulation of a certain sample size to the 30-sample estimate,

which for these evaluations we assumed represented “truth” and cal-

culated relative bias. We combined both variance and relative bias

into root mean squared error (RMSE), which estimates the sample

standard deviation of the differences between predicted and

observed values. Thus, we looked for decreasing root mean squared

error for each sample size simulation, which would indicate lower

overall relative bias and variance.

For intrapopulation simulations, we estimated mean proportion

of SNPs with zero IBS and mean kinship within each population

using 30 samples to provide a benchmark for precision of the simu-

lation replicates. Each simulation consisted of randomly selecting

(without replacement) sample sizes of 5, 10, 15, 20 and 25 drawn

from 30 possible genotypes for each population using R and PLINK

v1.07 or v1.90 software (Purcell et al., 2007; R Core Team, 2017),

with 10,000 replicate simulations for each sample size. There were a

large number of possibilities for unique combinations of samples for

each selected sample size from each herd (ranging from 142,506

possible unique combinations for sample sizes of 5 and 25 to

155,117,520 unique combinations for the sample size of 15), so we

used the “sample” command in R to select each of the 10,000 repli-

cates (R Core Team, 2017). Due to a maximum of 30 genotypes,

replicates were generally not independent of one another. For exam-

ple, for the sample size of 25, pairs of replicate data sets shared on

average about 20 of the same genotypes. Independence among

replicates increased at lower sample sizes, and a pair of replicates

for a sample size of 20 shared an average of 13 genotypes in com-

mon. Despite these limitations, we were able to evaluate the

decrease in variance due to sample size with more independent

replicates using the 86-sample Beartooth Absaroka data set, and for

a sample size of 25, pairs of replicate data sets shared an average of

seven genotypes in common. Populations composed of unrelated

individuals are expected to have mean kinship values that are nor-

mally distributed around 0 (Manichaikul et al., 2010). Negative mean

kinship values can be produced but can be effectively truncated at 0

to indicate low kinship, but we did not truncate values to evaluate

the distribution of simulation results (Manichaikul et al., 2010). Iden-

tity by state and kinship simulations did not require filtering within

the simulation or LD pruning (Manichaikul et al., 2010). Subsetting

of samples was implemented in PLINK v1.90 for identity by state and

v1.07 for kinship simulations (Purcell et al., 2007). Probability of zero

identity by state and kinship estimates were calculated using KING

software v2.0 (Manichaikul et al., 2010). For all metrics, we calcu-

lated the mean of the estimates produced by each sampling group.

We compared variance and bias of the 10,000 replicate estimates

for each sample size simulation relative to values obtained when we

used all available samples (n = 30 or 86). To evaluate intrapopulation

metric estimates across the spectrum of sample sizes, we determined

the extent of overlap in the range of estimates provided by each

sample size for populations with different management histories.

For interpopulation metrics, we conducted simulations to com-

pare results by sample size for FST, probability of zero identity by

state, and kinship between herds. We estimated mean kinship, IBS

and FST between populations using 30 samples from each population

(60 total) to provide a benchmark for precision of the simulation

replicates. For the simulations, we randomly selected (without

replacement) sample sizes of 5, 10, 15, 20 and 25 drawn from 30

possible genotypes for each population using R and PLINK v1.07 or

v1.90 software (Purcell et al., 2007; R Core Team, 2017) using

10,000 replicates. There were a large number of possibilities for

unique combinations of samples for each selected sample size (rang-

ing from 285,012 possible unique combinations for sample sizes of 5

and 25 to 310,235,040 unique combinations for the sample size of

15), so we used the “sample” command in R to select each of the

10,000 replicates (R Core Team, 2017). For interpopulation metric

estimates, we evaluated if the range of estimates produced by the

simulation provided different inferences regarding the relative com-

parisons of population differentiation among herds for various sam-

ple sizes. The FST simulation required filtering each random sampling

group and analysis using PLINK v1.90 (Purcell et al., 2007) to emulate

typical FST analysis procedures, which involved removal of SNPs with

a minor allele frequency of less than 0.0001 and those that deviated

from Hardy–Weinberg equilibrium using a threshold of p < 0.00001.

In addition, we employed LD pruning of each sampling group to

ensure independence of markers using a window size of 100, win-

dow increment of 25, LD statistic of r2, LD threshold of 0.99 and LD

computation method CHM (Huisman et al., 2016).

3 | RESULTS

3.1 | Kinship of bighorn sheep populations

Ovine HD array analysis produced a genotype of 605,898 SNPs

from the forward strand. Applying a sample quality filter call rate

threshold of 0.85 did not remove any samples from the 30 samples

per herd data set and removed one sample from the Beartooth

Absaroka large data set, leaving 86 samples. Deactivation of SNPs of

unknown mappings and on sex chromosomes removed 29,401 SNPs

from both data sets. Application of the minor allele frequency of less

than 0.0001 removed 505,235 SNPs in the 30 samples per herd data

set and 530,050 SNPs from the Beartooth Absaroka 86 sample data

set. Requiring a SNP call rate of greater than 0.99 resulted in

removal of 57,038 SNPs from the 30 samples per herd data set and

35,665 SNPs from the Beartooth Absaroka 86 sample data set.

These quality control steps resulted in 14,224 SNPs remaining for

the 30 samples per herd data set and 10,782 SNPs remaining for

the 86 sample Beartooth Absaroka data set, with a SNP density of 1

SNP per 170.404 kb and 1 SNP per 224.002 kb, respectively. We

6 | FLESCH ET AL.



generated a PCA of the 30 samples per herd data set using 7,688

SNPs after filtering, which suggested four distinct populations (Fig-

ure 2).

Mean proportion of SNPs with zero IBS within populations was

similar for the two metapopulations using all 30 samples, Glacier

(0.023 � 0.005 SD) and Beartooth Absaroka (0.024 � 0.003 SD).

Intrapopulation mean kinship was also comparable between Glacier

(�0.002 � 0.067 SD) and Beartooth Absaroka (0.003 � 0.033 SD).

As expected for a population composed of unrelated individuals, Gla-

cier and the Beartooth Absaroka had average population mean kin-

ship values that were close to 0 (Manichaikul et al., 2010). Estimates

based on all 86 samples from the Beartooth Absaroka were

0.032 � 0.004 SD for probability of zero IBS and 0.020 � 0.033 SD

for mean kinship, which were slightly higher than values obtained

from the subsample of 30 for this herd. The two smaller populations

with more complex herd histories had greater within-herd kinship

than the metapopulations (Glacier or Beartooth Absaroka) for both

mean proportion of SNPs with zero IBS using all 30 samples (Fergus

x = 0.019 � 0.005 SD; Taylor-Hilgard x = 0.018 � 0.005 SD) and

mean kinship (Fergus x = 0.045 � 0.063 SD; Taylor-Hilgard

x = 0.064 � 0.055 SD).

Interpopulation metric estimates using 30 samples from each

herd (60 total genotypes) resulted in differences in relative ranking

of relationships between herds, depending on the metric employed.

Application of FST resulted in the Fergus versus Beartooth Absaroka

comparison estimated to be most distantly related (0.086), followed

by Fergus versus Glacier (0.080), Fergus versus Taylor-Hilgard

(0.079), Glacier versus Taylor-Hilgard (0.075) and Glacier versus

Beartooth Abaroka (0.071). Taylor-Hilgard and Beartooth Absaroka

were the most closely related of the FST estimates (0.032). Mean

proportion of SNPs with zero IBS resulted in slightly different

ranking of interpopulation estimates, with Glacier versus Beartooth

estimated to be the most distantly related (0.0363 � 0.004 SD), fol-

lowed by Fergus versus Beartooth Absaroka (0.0361 � 0.004 SD),

Fergus versus Glacier (0.034 � 0.005 SD), Glacier versus Taylor-Hil-

gard (0.033 � 0.005 SD), Taylor-Hilgard versus Beartooth Absaroka

(0.032 � 0.004 SD). Fergus and Taylor-Hilgard were estimated to be

most closely related using IBS (0.029 � 0.005 SD). Mean kinship

estimates between populations resulted in similar relative ranking of

estimates as the IBS approach, except Fergus versus Beartooth

Absaroka (�0.188 � 0.108 SD) was estimated to be more distantly

related than Glacier and Beartooth Absaroka (�0.182 � 0.088 SD).

All interpopulation mean kinship values were estimated to be nega-

tive, indicating relatively low kinship among the populations.

3.2 | Sample size simulations

For intrapopulation metric estimates, sample size influenced whether

the range of estimates provided by each sample size overlapped for

populations with different management histories (Figure 3). We cal-

culated one minus mean kinship so that relative kinship estimates

among herds would be comparable to IBS results. At smaller sample

sizes of n ≤ 15, the two metapopulation (Glacier and Beartooth

Absaroka) distributions overlapped mean kinship and IBS distribu-

tions of herds with more complex management histories (Fergus and

Taylor-Hilgard). Increasing differentiation among herds was notice-

able at n = 20 for mean proportion of SNPs with zero IBS, and the

two different types of management histories were clearly differenti-

ated at a sample size of 25 for IBS and mean kinship metrics.

Increasing sample size also resulted in decreasing RMSE across all

populations, regardless of management history. RMSE was primarily

influenced by variance, as bias relative to the mean for n = 30 was
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F IGURE 2 Principal component 1 (PC1;
eigenvalue = 4.03) plotted against principal
component 2 (PC2; eigenvalue = 3.40) for
30 Rocky Mountain bighorn sheep (Ovis
canadensis canadensis) per population from
four different herds. Different populations
are indicated by colour, including
Beartooth Absaroka (light grey), Fergus
(white), Glacier (black) and Taylor-Hilgard
(dark grey). PCA analysis included 7,688
SNPs and was completed using Golden
Helix SNP & Variation Suite v8.6 software
(SNP & Variation Suite, n.d.)
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relatively low across all sample sizes. Evaluation of intrapopulation

metrics using all 86 samples from the Beartooth Absaroka (Support-

ing Information Figure S1) showed that RMSE continued to decrease

at a slower rate beyond the smaller sample sizes of n = 5 to n = 20

and declined towards zero at a sample size greater than n = 25. In

general, uncertainty in estimates indicated that we could not confi-

dently discern differences in IBS and mean kinship between herds of

differing population histories at sample size 15.

Similar to our results for the intrapopulation simulation results,

all metric estimates based on sample sizes of 5–15 had high variance

and similar distributions across population comparisons (Figure 4).

Furthermore, RMSE decreased with increasing sample size per herd

and was generally not affected by the estimated relative kinship

among herds. Increasing sample size changed the mean FST estimates

the most of all three metrics across the 10,000 replicates, likely due

to required filtering implemented for each individual replicate. As

sample size increased, the number of SNPs removed at each filtering

stage generally decreased. Thus, greater sample sizes included a dis-

proportionately greater number of SNPs in the FST calculation than

smaller sample sizes, which resulted in a greater change in the mean

estimate for the 10,000 replicates than observed for the other met-

rics (Supporting Information Figure S2). Within the simulation, we

used a filtering process that typically is applied to calculate FST given

a certain sample size. The differences in mean FST estimates by sam-

ple size due to the filtering process demonstrated that a comparison

of FST estimates using different sample sizes has the potential to be

especially problematic for this metric. For sample sizes 5–25, the dis-

tribution of FST estimates for many of the population comparisons

overlapped, with greater differentiation among estimates at sample

sizes of 20 and 25. Estimates of mean proportion of SNPs with zero

IBS provided slightly different results and provided more nonoverlap-

ping distributions of estimates than FST estimates at sample sizes of
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F IGURE 3 Boxplots of intrapopulation metric estimates based on 10,000 replicate simulations using empirical SNP genotypes from
populations of Rocky Mountain bighorn sheep (Ovis canadensis canadensis), including one minus mean kinship (a) and mean proportion of SNPs
with zero identity by state (IBS; c) by increasing sample size. Centre lines represent the median, box limits represent the 25th and 75th
percentiles, whiskers indicate 1.5 multiplied by the interquartile range from the 25th and 75th percentiles, points represent outliers. Root mean
squared error (RMSE) is plotted for mean kinship within herd (b) and mean proportion of SNPs with zero identity by state (IBS; d). Different
populations are indicated by colour, including Beartooth Absaroka (light grey), Fergus (white), Glacier (black) and Taylor-Hilgard (dark grey)
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F IGURE 4 Boxplots of interpopulation metric estimates based on 10,000 replicate simulations using empirical SNP genotypes from
populations of Rocky Mountain bighorn sheep (Ovis canadensis canadensis), including one minus mean kinship (a), mean proportion of SNPs
with zero identity by state (IBS; c) and Wright’s FST (e) by increasing sample size per individual population included. Centre lines represent the
median, box limits represent the 25th and 75th percentiles, whiskers indicate 1.5 multiplied by the interquartile range from the 25th and 75th
percentiles, points represent outliers. Root mean squared error (RMSE) is plotted for mean kinship within herd (b) and mean proportion of
SNPs with zero identity by state (IBS; d), and Wright’s FST (f). Different population comparisons are indicated by colour
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20 and 25. Mean kinship simulations resulted in similar overall

results to IBS estimates, with decreases in overlap with increasing

sample size, but distributions overlapped only up to a sample size of

20. At sample size of 25, populations that were most related had

distributions of mean kinship estimates that could be distinguished

from populations that were estimated to be the least related.

By evaluating our simulation results, we concluded that a sample

size of 25 was adequate for intrapopulation and interpopulation

genetic management metric assessments of bighorn sheep popula-

tions using the HD Ovine array. Clear differences in estimates

between herds for intrapopulation metrics and between herd com-

parisons for interpopulation metrics were apparent across metric

types at a sample size of 25. In addition, RMSE consistently

decreased with increasing sample size across all metrics and popula-

tions, regardless of management history. For the intrapopulation

metrics, a sample size of 25 allowed for differentiation in estimate

results among herds with different management histories, as the

metapopulations (Glacier and Beartooth Absaroka) had lower mean

intrapopulation kinship and IBS than the relatively small native herd

(Taylor-Hilgard) and the reintroduced herd (Fergus; Figure 3). Inter-

population metric results also supported a sample size of 25 to dis-

cern meaningful differences among herd comparisons for all metrics

(Figure 4). The relative ranking of herd comparisons differed slightly

for FST estimates, in comparison with mean kinship and IBS, which is

likely due to the metric’s differing approach and filtering require-

ments (Supporting Information Figure S2).

As the simulations drawn from a total sample size of 30 had less

independence among replicates for larger sample sizes, the standard

deviation estimates for the sample size of 25 may be slightly under-

estimated. To evaluate the extent of this issue, we compared the

standard deviation of the Beartooth Absaroka data set at a sample

size of 25 drawing from 30 samples and to that drawing from 86

samples. For the 86 sample size pool, pairs of replicate data sets will

on average share about 7 of 25 individuals. The standard error is

roughly double for n = 25 (0.00547) drawing from 86 samples in

comparison with n = 25 using 30 samples (0.00258; Supporting

Information Table S3). Even if the standard error estimates are actu-

ally double those presented in that figure, the distributions of esti-

mates for each population would still have little overlap (Figure 3a).

The results of intrapopulation simulations for the Beartooth Absar-

oka using 86 samples (Supporting Information Figure S1) also sug-

gested that a sample size greater than 25 can further reduce RMSE.

Furthermore, the inclusion of additional Beartooth Absaroka samples

resulted in slightly different within-herd mean kinship and IBS esti-

mates, in comparison with the 30-sample estimate. The slight change

in estimates is likely due to the 30 samples being selected across a

wide geographic area, whereas the 86-sample approach included

more individuals from similar areas, which impacted overall estimated

kinship and IBS. If a reduced RMSE is important to study objectives,

these results indicate that increased sample size continues to

improve RMSE beyond a sample size of 25 for within-herd kinship

estimates. Complete tables of our simulation results can be found in

Supporting Information Tables S1–S3.

4 | DISCUSSION

The framework outlined here provides an approach to identify the

optimal sample size for three different common relationship metrics

to facilitate comparing results among different populations, as well

as quantify expected variance of estimates. As genomic metrics are

estimates, rather than exact measures of quantities of interest, the

inherent uncertainty due to sampling is important to consider.

Uncertainty can be introduced through selection of a limited number

of individuals to represent the population of interest. For the evalu-

ated bighorn sheep populations, a sample size of less than 20–25

would introduce an unacceptable level of uncertainty to estimate

both within and between populations for the selected metrics. The

sample size of 8–10 recommended by Nazareno et al. (2017) using

plant genomic data would not provide clear results to compare any

of our examined metrics among herds using our bighorn sheep geno-

type data set. For example, transformed mean population kinship

estimates at a sample size of 10 for Glacier ranged from 0.936 to

1.070 and for Fergus ranged from 0.918 to 1.012. However, differ-

ences in within-herd kinship were detected at a sample size of 25,

which provided estimates for Glacier ranging from 0.979 to 1.016

and for Fergus ranging from 0.933 to 0.966 (Figure 3a).

Thus, we suggest that a universal sample size rule is unlikely to

exist given the complexities that impact genomic kinship and

inbreeding estimates. These complexities include not only the molec-

ular markers genotyped, but also the spatial distribution of samples

and the genetic characteristics of the individuals and populations

examined. The Beartooth Absaroka generally had lower RMSE for

within-herd mean kinship (Figure 3b,d), suggesting that a combina-

tion of population allele frequencies and the markers genotyped can

result in slightly different variance and relative bias by population.

Individual genetic samples are often nonrandomly collected at low

numbers, due to the cost and logistical difficulties of live animal cap-

ture, and a small sample of convenience may influence inferences

from genetic management metric estimates. Uncertainty in estimates

provided by our bighorn sheep empirical simulations indicated that

we cannot confidently discern differences in intrapopulation kinship

and IBS between herds of differing population histories at commonly

used sample sizes of 15 and lower (Figure 3).

Depending on the samples drawn using a sample size of 15 indi-

viduals for each herd, one might incorrectly infer the Glacier

metapopulation had higher average within-herd mean kinship than

the Fergus and Taylor-Hilgard herds with more complex histories.

However, when we increased sampling intensity by a modest

amount (5–10 samples), the estimates provided more accurate infer-

ences, such that we detected that the metapopulations had lower

within-population mean kinship and IBS than the smaller herds. Simi-

lar to that, between population mean kinship, IBS and FST estimates

required higher sample sizes for precise estimates, and relative dif-

ferences among the comparisons were not clear for sample sizes

15–20 or lower (Figure 4). Small sample sizes have the potential to

result in a lack of clarity in the relative comparisons of estimates,

which limits our ability to accrue reliable knowledge, effectively
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address ecological questions, and make management decisions. For

example, mean kinship can be useful for making translocation deci-

sions to maximize genetic diversity, by identifying the best source

population for a translocation based on which candidate population

is least related to the recipient population (Frankham et al., 2017).

Thus, it would be beneficial for researchers to have a resource that

can help with the process of deriving meaningful inferences based

on comparing genomic estimates of mean kinship among populations

within the same study area or among studies.

Researchers can add rigour by increasing sample size per popula-

tion and using consistent sample sizes across compared populations

to ensure comparable precision. To determine how many samples

are adequate for study goals, a pilot study and simulations using our

provided R code with actual genotype data from a select number of

populations can help determine what sample size is required to

detect differences among sampled herds that are deemed biologically

meaningful. A challenging decision at the simulation stage is to

determine the level of investment necessary to create a group of

samples to use in a simulation context. One limitation of our work is

the use of only 30 genotypes from which replicates were drawn,

and this resulted in lack of independence among replicates. We sam-

pled to the extent possible given the expense of captures and geno-

typing, and similar nonindependence among replicates is a common

issue among other empirical simulations (Gaughran et al., 2017;

Nazareno et al., 2017). Employing a greater number of samples than

30 would allow us to generate more unique replicates. We can

address this limitation by evaluating the intrapopulation simulations

for the Beartooth Absaroka using 86 samples (Supporting Informa-

tion Figure S1). The within-population mean kinship and IBS simula-

tions for the Beartooth Absaroka using 86 samples suggested that a

sample size of 25 and greater can further reduce RMSE. Thus, if the

largest sample size available in the simulation is unacceptably small,

the relative bias and RMSE calculations can be misrepresented. The

Beartooth Absaroka results indicated that researchers should look

for a decrease in RMSE as sample size increases, which suggests that

the maximum sample size available may be an acceptable reference

point (Supporting Information Figure S1). If the RMSE decreases dra-

matically or the mean simulation estimate experiences large changes

at all examined sample sizes, as seen from sample sizes 5–15 in our

simulation results, it may be necessary to examine a greater maxi-

mum sample size for effective sample size decisions. We suggest

that the effect of nonindependent replicates in empirical simulations

with limited data is an important area for future research.

A simulation approach to evaluate sample size not only pro-

vides a procedure to standardize uncertainty as effectively as pos-

sible, but also provides more information to the scientific

community to draw biological inferences. The standard deviation of

the mean for all simulation replicates of a certain sample size

serves as an appropriate estimate of the empirical standard error

of the mean, as long as it is reasonable to assume that 30 sample

estimates for our selected metrics are adequate to represent truth.

The extent to which this is true depends on the proportion of the

population that was sampled and the amount of variation in

kinship and inbreeding found in the population. Thus, our standard

errors should be viewed as approximate values for the range of

standard error values that can be expected for metric estimates at

a specified sample size. For example, the standard deviation or

standard error of the mean for mean kinship simulation replicates

for Fergus was 0.0211 for a sample size of 10, which could be

interpreted to indicate that one could only expect to estimate the

mean kinship for the population within �0.0422 for an estimate of

0.0448. In contrast, with a sample of 25 from the Fergus popula-

tion, the standard deviation was reduced to 0.0065, so that the

mean kinship estimate could be calculated within �0.013 for an

estimate of 0.0445. The level of variance that is acceptable can

vary by study goals and inherent differences among populations

examined. For making management decisions, Frankham et al.

(2017) recommend detecting differences in mean kinship at a scale

of 0.10 or finer. However, given our data set and filtering proto-

cols, we found that slightly greater precision was necessary to dis-

tinguish between different populations.

Bighorn sheep captures can be expensive and relatively difficult,

so we promoted genetic sampling by collaborating agencies of all

animals captured for management actions and nongenetic research

objectives such as collaring or disease monitoring, given the low cost

of collecting gene cards and biopsy punch samples. Our motivation

to evaluate sample size was to inform managers as to the number of

samples that should be genotyped per bighorn sheep herd for a

future large-scale genomic assessment of additional populations, by

conducting simulations with a small number of herds with a range of

possible management histories. In addition to providing sampling

insights for our own study, we think that the herds used in our simu-

lation may capture the range of attributes of bighorn herds through-

out western North America, and our findings can inform sample size

decisions for population genomic assessment of other bighorn sheep

herds when the HD Ovine array is employed.

For other species, our approach can be applied to conduct sam-

ple size simulations specific to the examined species and molecular

markers to provide information regarding the sampling required for

evaluation of population genetic metrics. When animals are routinely

captured for research and management purposes, it would be worth-

while for field personnel to collect genetic samples from all captured

animals and build an archive of samples at a relatively low expense.

In the event that the management agency or research entity has

interest in research questions that can be addressed through popula-

tion genomics, this archive would enable geneticists to be much

more efficient with resources and have samples available for future

genomic techniques that may be developed. By conducting a small

simulation pilot study on a subset of available samples, they can

select an optimal number of samples per population to genotype for

the larger study. An additional consideration that can be important

in a pilot study may be the proportion of the population of interest

captured within a sample. When the sample includes ≥5% of the

actual population with an accurate population size estimate, biolo-

gists can use a finite population correction factor to more accurately

estimate the standard deviation of mean kinship. Our approach did
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not include a finite population correction factor, and thus our stan-

dard deviation estimates may be conservative for Taylor-Hilgard, our

smallest population examined, with an estimated population size of

280. In regard to very large populations, spatial distribution of the

selected sample size may become increasingly important and the ref-

erence sample size may need to be larger than 30 to successfully

capture a representative sample that accurately describes mean kin-

ship across the area of interest, particularly if the population may

exhibit genetic spatial structure.

Selecting an appropriate sample size and making that decision

consistent across populations of interest would enhance population

genetic inferences and serve as an informative alternative to sam-

pling based on convenience. Our suggested simulation method may

not be possible for studies concerning species or populations that

are extremely rare or difficult to capture, and in this case, research-

ers are constrained to the available genetic samples. However, this

method can be relatively easily implemented with the use of other

genomic marker types for species that are accessible or easily cap-

tured. Our annotated R code (Supporting Information Appendix S1)

employs commonly used software, data formatting and metrics for

straightforward application to any genomic data set. There are many

more population genetic metrics than those included in this study,

and we expect our workflow can be easily adapted to include almost

any alternative genetic metric within the simulation script. When a

sample size simulation is not feasible for a particular study, research-

ers could apply insight from other comparable species with similar

marker sets to establish a reasonable sample size target. As geno-

mics continues to become an increasingly important approach to

address questions for both ecologists and wildlife managers, we rec-

ommend that sample size simulations be conducted to help stan-

dardize precision of results across evaluated populations to indicate

the necessary sample size for research regarding relationship infer-

ences and population structure. Rigorously evaluating uncertainty

and adapting sample size decisions to each unique problem can

serve to enhance inference reliability and maximize comparability of

studies that estimate inbreeding and kinship.
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